User-centric solutions for a flexible and modular manufacturing in small and medium-sized shipyard

MARI4YARD

Introduction to Mari4_YARD Project and main results

Jawad Masood Team Leader Robotics – Project Coordinator AIMEN O Porriño, 14th November, 2024

4th Workshop - AIMEN Technology Center, Spain

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006798

Context of Mari4_YARD @Workshop 4

The main objectives of todays event

- To get together and discuss the main challenges
 - Future of shipbuilding
- To present the project results to main stakeholders
 - Mari4_YARD human centric technologies such as
 - Digital Solutions for 3D Modeling: These solutions will streamline the retrofitting and repairing of vessels, reducing rework and changes by up to 60%.
 - Safe Robot-Based Solutions: Collaborative robots will be integrated into the shipyard environment to improve efficiency and reduce process time.
 - AR/MR Tools: Augmented and mixed reality tools will assist workers in positioning equipment and subassemblies with greater precision.
 - AI-Enhanced Exoskeletons: Exoskeletons powered by AI will reduce worker fatigue and improve task quality and precision.
- How to protect our knowledge, IP protect.
- Explore future opportunities and challenges
 - Roundtable Q&A
- Networking and information exchange around Europe and beyond

at AIMEN (O Porrino, Pontevedra, Spain)

Mari4_YARD

MARI4YARD

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement nº 101006798.

Objectives and concept

Portfolio of worker-centric tools that allows for an easy deployment of advanced technologies.

Scenarios

- Shipbuilding
- Retrofitting/Repairing

Impact areas

- Safety
- Quality
- Productivity

Objectives and concept

Scope

- Increase the efficiency in the manufacturing of complex vessels by small and medium-sized shipyards
- Preserving industry-specific workers' knowledge

Approach

- Automation based on worker-centric tools
- Modular, portable and flexible equipment

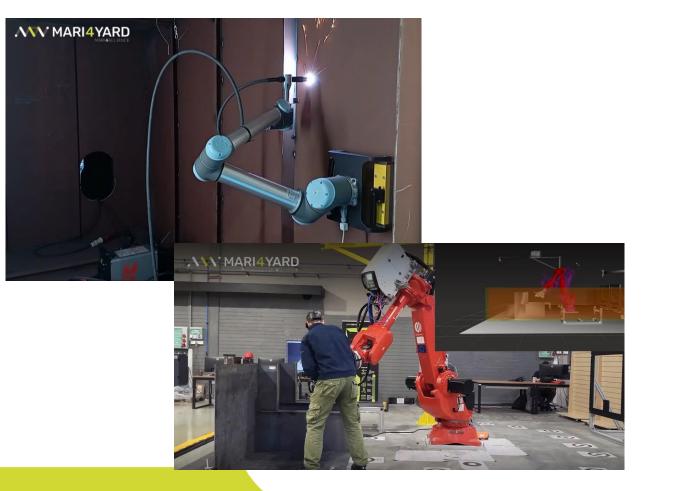
Deployment

- New construction and retrofitting/repairing
- Steelwork, pre-production and outfitting stages

Worker-centric approach

User acceptance

Mari4_YARD solutions portfolio


To implement a portfolio of worker-centric tools (TRL 7)

- High-payload collaborative robots for assisting operators and acting as work-holding devices
- Flexible and mobile manipulators (Easy to deploy)
- Upper-limb and lumbar exoskeletons
- Projectors and handheld devices providing instructions to operators in the manufacturing processes
- Head Mounted Displays for training
- Digitalization and reverse engineering (3D scanning)

Mari4_YARD solution target

Development of intuitive human-robot collaborative solutions

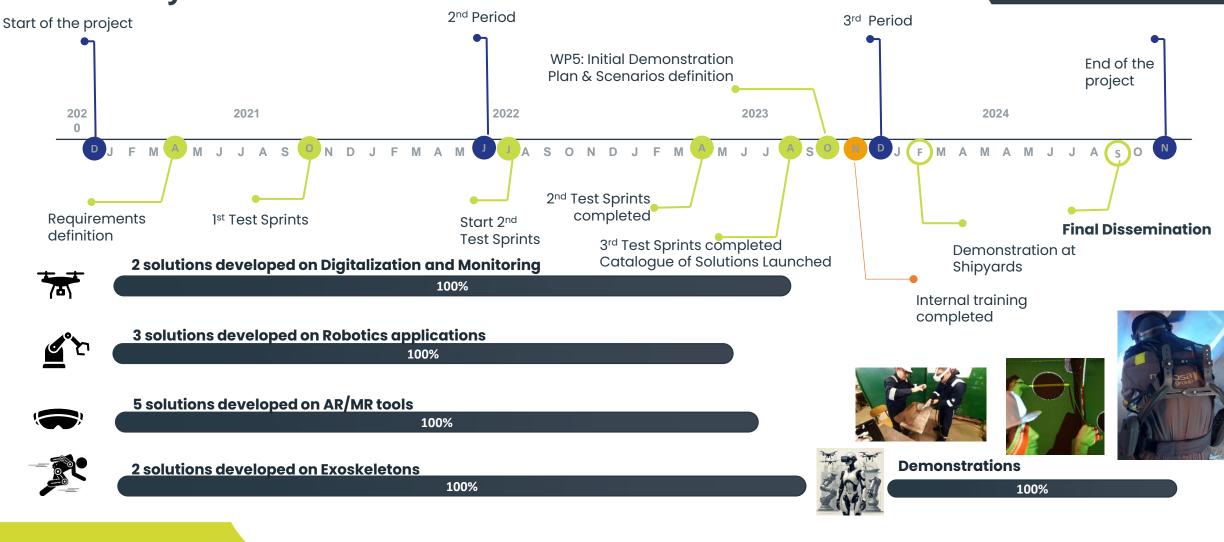
- Symbiotically integration of operators' skills and dexterity into flexible and reconfigurable solutions
- Safe, modular and collaborative robot solutions
- Programming and setting time reduction by skillbased and intuitive robot programming
- Reduction of production process time

Mari4_YARD solution target

To develop handheld and portable AR/MR tools for assisting shipyard workers

- Reducing reworks and changes, particularly in the latest phases of the construction
- Increasing precision and quality by relying on AR/MR tools for a precise positioning of the different subassemblies
- More efficiently training for new shipyard workforce in machinery and deck equipment

Mari4_YARD solution target

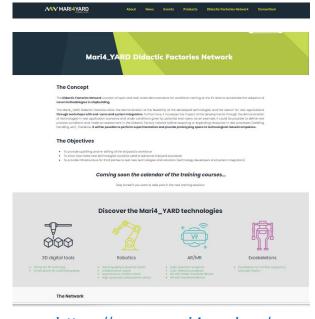

Al-assisted exoskeletons for reducing fatigue and physical stress

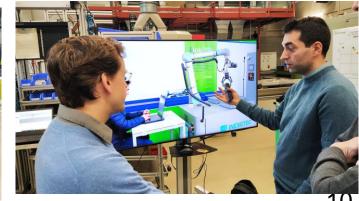
- Reduction of workers physical effort in the execution of the target tasks
- Usability and acceptability assessed
- Improvement of the ergonomics risk factor in the target applications

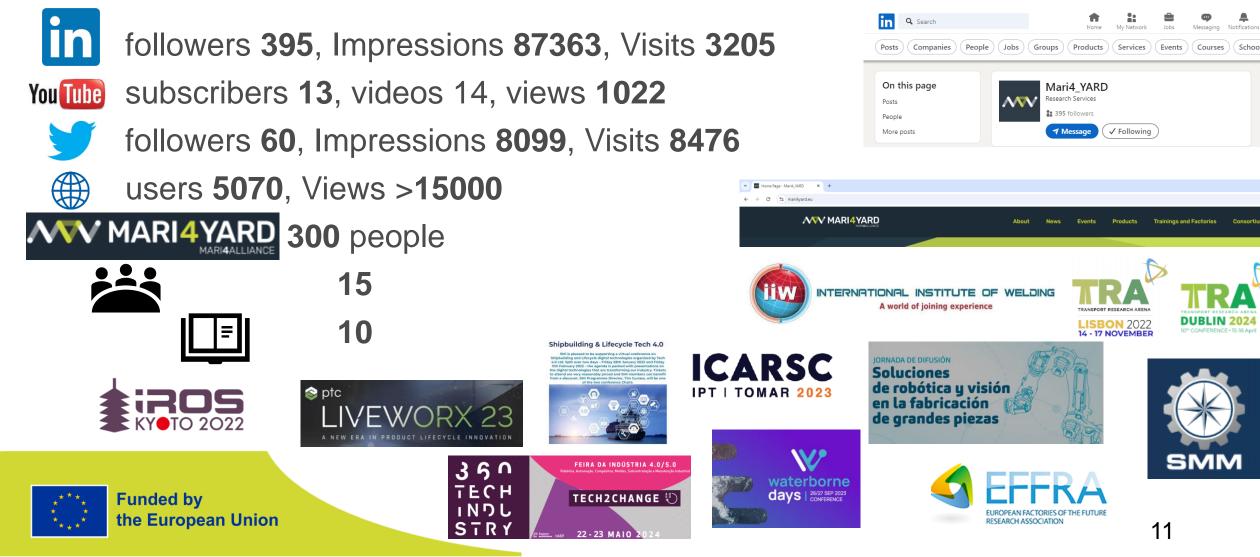
The Journey

Technology transfer

Demonstrate Mari4_YARD approach at real-scale targeting both shipbuilding and retrofitting in SME-shipyards (TRL7), fostering results exploitation and enabling EU wide manufacturing adoption


- **2 real-scale demonstrators** (TRL 7) in small-sized (NODOSA) and medium-sized (BRODOSPLIT).
- Didactic Factories Networks: 5 open pilot lines, hosted at RTOs, enabling EU-wide workforce upskilling and technology adoption by EU industry, ensuring a successful market uptake
- Mari4 alliance community: engage stakeholders to participate in the community, promoting the Mari4_YARD and its results and opportunities.
- Training courses


Funded by the European Union



https://www.mari4yard.eu/

Dissemination and Outreach

Brodosplit shipyard - 7 solution deployment

Worker-centric tools to be deployed

- Digitalisation using reverse engineering, 3D scanning and 3D modelling
 - Production planning
 - Continuous monitoring
 - Pre-step for other digitalisation phases

- Augmented and Mixed reality
 - Construction supervision
 - Production planning
 - Workers training
- Use of robots with fast programming
 - Production improvement
 - Quality improvement

General Impact of the project outcomes (11 Use-cases and 33 KPI's) - BIS

С	Use-Case
Advance monitoring using 3D scanning	Scan the finished vessel
High-payload robots in shared space with humans	Robot to transport parts
	Help worker when supporting heavy part in position to be fixed
Augmented reality with handheld devices	Position elements by means of AR/VR based in the vessel 3D Model
	Identify elements by means of AR/VR
Mixed reality with headsets	Identify elements by means of AR/VR
	Help workers to install/check equipment using AR/VR
Mixed reality with AR glasses	Identify elements by means of AR/VR
	Help workers to install/check equipment using AR/VR
High precision projection system	Position elements by means of projection based in the vessel 3D Model
Cost effective projection	Position elements by means of projection based in the vessel 3D Model

Target KPI's

Productivity

•

•

.

•

•

٠

٠

.

•

•

•

Efficiency

Time Saved

Cycle Time Reduction

Process Time Improvement

Training Time Reduction

Ergonomics Improvement

Cost and Resource Savings

Rework Reduction

Paper Drawings Reduced

Hand Guiding Assistance Time

Operation Time Improvement

Setup Time Reduction

Accuracy and Quality

- **Error Reduction** .

MARI4YARD

- Accuracy Improvement •
- **Precision of Projections** ٠
- **Collision Problems Avoided** .

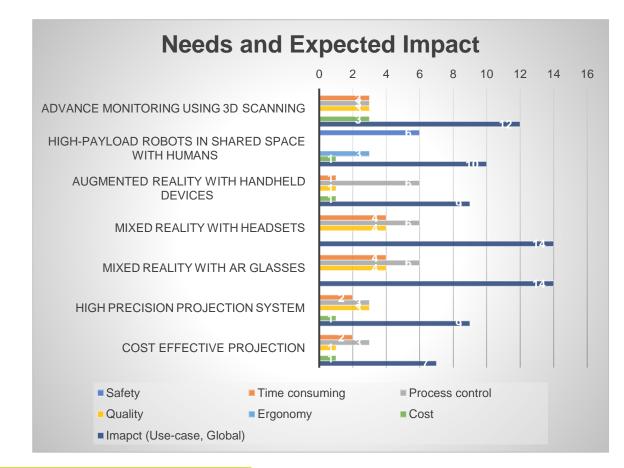
User Adoption and Satisfaction

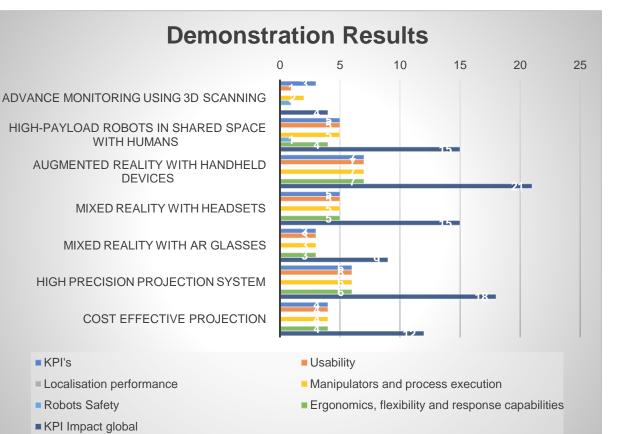
- **User Satisfaction** •
- Acceptance Rate •
- **Knowledge Retention**

Training and Development

- **Training Time Reduction** ٠
- **Knowledge Retention** ٠

Skill Improvement .





Robot Programming Time Reduction

General Impact of the project outcomes

We have prepared demos, where tech developers can give you handson :

Technologies	Location
Advance monitoring using 3D scanning	Hall
High-payload robots in shared space with humans	Video and demo on the workshop
Augmented reality with handheld devices	Hall
Mixed reality with headsets	Remote
Mixed reality with AR glasses	Hall
High precision projection system	Workshop
Cost effective projection	Workshop

Nodosa shipyard - 5 solution deployment

Worker-centric tools of main interest


- Exoskeletons for welding in non-ergonomic poses
- Use of small robots inside the vessels for welding operations
- Use of robots in shared space in the workshop (fast teaching)

Potential impact

- Improvement on working conditions
- Reduction of welding time
- Improvement on repeatability and quality of welding

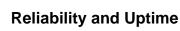
General Impact of the project outcomes (9 Use-cases and 29 KPI's) - NODOSA

Use-Case
Operational planning based on aerial survillance
Remove gas from refined spaces using drone
Robot to cut opennings
Welding robots to weld pipes in the blocks.vessels
Compare the real position of equipment and
elements by 3D scanning
Autonomous part placement/welding with mobile robots
Help workers when supporting heavy part in position to be fixed
Help workers using exoskeletons
Help workers when supporting heavy part in position to be fixed

Data Import and Integration

- Time to Import Point Clouds
- Time to Import CAD Formats
- Number of Importable File Formats

System Performance


System Setup and Deployment
Time

~ —

~ —

Reliabili

Time to Read Measured Parameters

- System Reliability and Uptime Rate
- Number of Completed Tasks

Deployment and Connection

- Hardware Deployment Time
- Electrical Component Connection Time

Ø

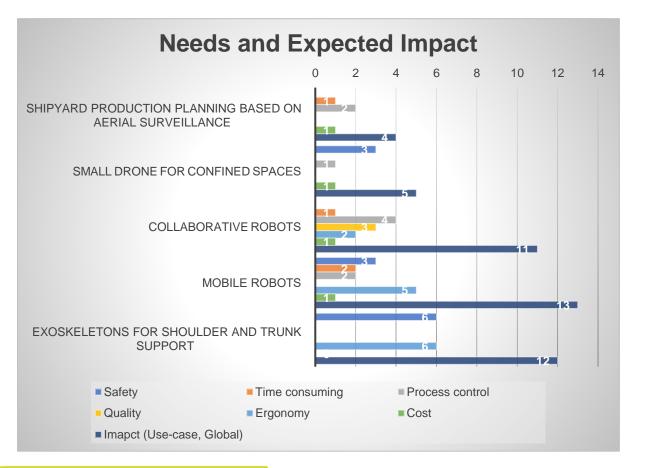
 Measurement Deviation from Real Values

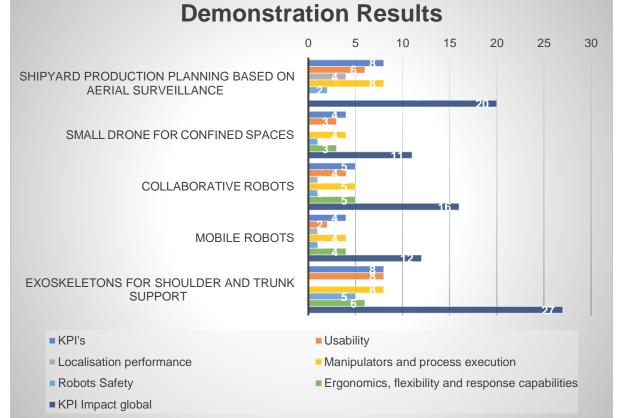
MARI4YARD

Accuracy of Robot Positioning

Task Efficiency and Productivity

- Time to Complete Welding Tasks
- Time to Complete Cutting Tasks
- Time to Pick Up Objects


EFFICIENT


User Experience and Ergonomics

- Exoskeleton Usability and Comfort
- Impact on Physical Effort and Fatigue
- Ergonomics Risk Index Reduction

MV MARI4YARD

General Impact of the project outcomes

We have prepared demos, where tech developers can give you handson:

Technologies	Location
Shipyard production planning based on aerial surveillance	Hall
Small drone for confined spaces	Hall
Collaborative robots	Workshop
Mobile robots	Hall
Exoskeletons for shoulder and trunk support	Hall

Didactic Factories Network

Scope

Open and real-scale demonstrators for workforce training at the EU level to accelerate the adoption of novel methodologies in shipbuilding.

Network of centres and general-purpose showroom facilities that will remain open to allow for training and skilling-up for given technologies.

Main Objectives

- Provide upskilling and re-skilling of shipyards workforce
- Demonstration of technologies that could be used to advance shipyard processes
- Provide infrastructure for third parties to test new technologies and solutions (technology developers and system integrators)

General Impact of the project outcomes

Mari4 alliance community

Workshops & Trainings

- 1st Workshop.
- 2nd Workshop
- 3rd Workshop
- 4th Workshop (AIMEN 14th November 2024)

Replicability and cross-industry technology scouting

 Benchmarking between the developed technologies and already existing ones, taking advantage of the Didactic Factories Network.

- Formulating more robust recommendations to SME-shipyards (Open access paper).
- Openly accessible **Best Practice Handbook, Public dataset, 3** deliverables (When end of the project – 1st week of December)

1st Workshop

2nd Workshop

3rd Workshop

The Team and Acknowledgement

Call topic MG-3-7-2020: Improved Production and Maintenance Processes in Shipyards

Thank you!

Catalogue of technologies

Jawad Masood | Project Coordinator

jawad.masood@aimen.es

4th Workshop - AIMEN Technology Center, Spain

VMARI4YARD

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006798