
Object segmentation for bin picking using deep
learning

Artur Cordeiro1,2, Lúıs F. Rocha2, Carlos Costa2,3, and Manuel F. Silva1,2

1 ISEP/IPP - School of Engineering, Polytechnic Institute of Porto, Porto, Portugal,
2 INESC TEC - INESC Technology and Science, Porto, Portugal,

3 FEUP - Faculty of Engineering, University of Porto, Porto, Portugal,
artur.j.cordeiro,luis.f.rocha,carlos.m.costa,manuel.s.silva}@inesctec.pt

Abstract. Bin picking based on deep learning techniques is a promis-
ing approach that can solve several analytical methods problems. These
systems can provide accurate solutions to bin picking in cluttered envi-
ronments, where the scenario is always changing. This article proposes
a robust and accurate system for segmenting bin picking objects, em-
ploying an easy configuration to adjust the framework according to a
specific object. The framework is implemented in Robot Operating Sys-
tem (ROS) and is divided into a detection and segmentation system.
The detection system employs Mask R-CNN instance neural network to
identify several objects from two dimensions (2D) grayscale images. The
segmentation system relies on the point cloud library (PCL), manipu-
lating 3D point cloud data according to the detection results to select
particular points of the original point cloud, generating a partial point
cloud result. Furthermore, to complete the bin picking system is em-
ployed a pose estimation approach based on matching algorithms, such
as Iterative Closest Point (ICP).
The system was evaluated for two types of objects, knee tube and trian-
gular wall support, ion cluttered environments. It displayed an average
precision of 79% for both models, an average recall of 92% and an aver-
age IOU of 89%. As exhibited throughout the article, this system demon-
strates high accuracy in cluttered environments with several occlusions
for different types of objects

Keywords: Bin picking, Deep learning, Mask R-CNN, Grasping, Neural
networks, Artificial Intelligence, ROS, RGB-D multimodal data.

1 Introduction

Robotic bin-picking based on deep learning techniques is a technology that ap-
plies a relatively recent concept, utilizing neural networks, intending to enhance
the standard bin picking approaches. These approaches are increasingly being
used in bin picking areas due to the potential of deep learning policies to further
increase the intelligence and learning capabilities of robots.

This article provides an accurate solution to robotic bin-picking picking prob-
lems in highly cluttered environments for any type of object, similar to an indus-
trial scenario, where the robot’s objective is to pick several objects from different



2 Artur Cordeiro, Lúıs F. Rocha, Carlos Costa, and Manuel F. Silva

bins, each of them composed of only one type of object. To accomplish this task
the framework has different models that accurately detect different types of ob-
jects, alternating them according to the determined action, achieving a robust
process that detects different types of objects in highly cluttered environments
by essentially modifying only the particular Mask R-CNN trained model.

Given these ideas, and after this brief introduction, the second section details
several related works to this article. In the third section is described the deep
learning training applied to Mask R-CNN neural network with TensorFlow 2,
and details how the dataset was generated. The fourth section provides a brief
overview of the bin picking algorithm and specifies the main stages of the imple-
mented framework. The succeeding section displays several results acquired with
evaluation datasets. To conclude, the paper briefly resumes the implementation
and presents possible future developments.

2 Related work

Over the years, several methods have been developed to solve bin picking prob-
lems, such as the one proposed by Doumanoglou et al. [1] in which an unsuper-
vised feature learning from depth-invariant patches for highly cluttered environ-
ments. Pochylyet al. [2] implemented a revolving vision system with a specific
gripper for organized industrial environments. Choiet al. [3] developed a voting-
based pose estimation algorithm for highly clutter environments with several
occlusions. Yanet al. [4] implemented a pipeline for different types of objects in
cluttered scenarios using an adaptive threshold segment to accelerate the pose
estimation. Leão et al. [5] proposed a framework for entanglements objects.

This article focus on solutions based on deep learning techniques, resorting
to distinct approaches, namely neural networks, and picking orientations. Lenz
et al. [6] implemented one of the first Red, Green, Blue - Depth (RGB-D) multi-
modal parallel gripper-oriented methods, evaluating grasp candidates for random
objects (Cornell grasping dataset objects) in a scenario without occlusions, to
select the final grasps pose were applied two deep networks with two inputs RGB
and depth data. Similar to Lenz et al., Mahler et al. [7] developed a research
project for generating synthetic datasets, parallel grasps and metrics of grasps
based on physics, called Dex-Net. Dex-net 2.0 [8] presented a parallel gripper-
oriented method to rapidly predict the probability of success of grasps from
depth images.

Diverging from gripper-oriented approaches and focusing more on object-
oriented segmentation methods, Zeng et al. [9] developed an RGB-D multi-view
object-oriented approach for Amazon Picking Challenge (APC). This approach
estimates the 6D pose by segmenting and labeling multiple views of the scenario
with a fully convolutional neural network and then fitting pre-scanned 3D object
models. Le et al. [10] developed a work very similar to the proposed implemen-
tation in this article, using the same neural network (Mask R-CNN), however,
the solution proposed by these authors was for planar objects in cluttered envi-
ronments using a vacuum gripper.



Bin Picking Object Segmentation 3

3 Deep learning training

Deep neural networks are mainly known and selected from their architectures,
presenting different features, such as bounding-box, and classifications, among
many others. As for this work, it was intended to detect and segment instances
of objects in a cluttered environment. Mask R-CNN was chosen from all the
possibilities considering that in the first place was the newest stable version
of R-CNN, a neural network with good results and a lot of progress made in
the segmentation field. Secondly, in several published papers, Mask R-CNN ob-
tained results above average, surpassing a lot of other neural networks. Thirdly,
as previously described, the main objective of this implementation was to find a
specific known place of the model to grab the object, this way excluding most of
the gripper-oriented neural networks. Lastly, it is an open-source neural network
with good community support, and with exceptional results concerning the de-
tection and segmentation of different objects with several occlusions [10], [11],
[12].

Mask R-CNN consists of two stages. The first stage, called a Region Pro-
posal Network (RPN), proposes candidate object bounding boxes. The second
stage, which is in essence Fast R-CNN [13], extracts features using region of
interest pooling (RoIPool) from each candidate box and performs classification,
bounding-box regression, and outputs a parallel binary mask for each RoI [14].

Mask R-CNN was trained in a system composed of a Ryzen 5 5600x proces-
sor, GTX 1060 6 GB graphic card and 32GB DDR4 memory. Unlike the original
neural network [15], this framework was processed with TensorFlow version 2
(2.4.1), ubuntu 20.04, CUDA toolkit 11.0, Nvidia driver 450.191.01, cuDNN 8.0,
and Keras 2.4.0. This adjustment included a few changes to the neural network,
assuring the compatibility between the used Mask R-CNN framework, functions
and libraries [15], [16]. Nearly all the adjustments required were due to the
incompatibility from TensorFlow functions, such as log graph, set intersection,
among others, that changed between TensorFlow version 1 and TensorFlow ver-
sion 2 [17]. Furthermore, the dataset class in the main python training script
was adapted to load different annotations formats (JSON and COCO) from the
custom dataset generated, different neural network parameters were adjusted,
and lastly, Mask R-CNN neural network layers (2+,3+, heads,+4,...) training
procedure was adapted according to the learning results.

3.1 Dataset generation

The dataset generation was executed with real data, acquired by an RGB-D
sensor, and manually labeled by an human operator with third-party annota-
tors support. The RGB-D sensor, identified as Photoneo PhoXi 3D Scanner, is
capable of acquiring depth and grayscale data, allowing different types of deep
learning training inputs. The scanner has up to 3.2 million 3D points of resolu-
tion with a throughput of 16 million points per second, and from 384 to 520 mm
of scanning range. The resolution of the 2D images taken is up to 2060x1544,
including grayscale and depth images. It can be controlled by software, called



4 Artur Cordeiro, Lúıs F. Rocha, Carlos Costa, and Manuel F. Silva

PhoXi Control, via ethernet, which includes a Graphical User Interface (GUI)
and an Application Programming Interface (API) [18]. In this implementation,
the datasets used for both training and evaluation were divided into two models:
90º elbow tube (Model A) and triangular wall support (Model B).

The training was executed with 2D grayscale data, although in later stages
of the process was necessary point cloud data, in order to implement pose es-
timation and segmentation methods. The 3D point cloud data is automatically
generated by the sensor through multi-modal approaches from the initial data
acquisition (RGB or grayscale and depth map).

The generated dataset for model A was divided into 4 batches. The first batch
was introduced with different 3D views of the scenario, including only one tube or
model. Similar to the first, the other batches, from second to fourth, presented a
similar scenario with different views, differing in the number of objects presented,
in this case, 2 to 4 objects, respectively. The higher the number of batches, the
more complex was the environment.

The second resorted approach was very similar to model A: the dataset was
divided into three different batches, differing in the number of objects presented.
To add robustness to the model it was implemented an augmentation process,
with added noise, rotating, cropping, flipping, saturating, brightness, among
other processes, enhancing the training process.

Table 1 depicts information about the dataset generation of the two models.
Model A dataset is larger than model B, and with more geometrically complex
objects to segment, requiring on average 21 seconds to annotate a single object.
Taking into account that some images have 4 objects, it requires on average 84
seconds to complete an image annotation. Model B dataset was originally much
smaller, including 59 images with 155 annotations; however, with the application
of augmentation steps, were generated 179 images from the original 59.

Table 1. Dataset information

Dataset
Nr of
images

Nr of
annotations

Time per
annotation (s)

Model A 488 737 21
Model B 59 155 11.49

Model A + Augmentation 732 - -
Model B + Augmentation 238 - -

4 Proposed bin picking system

The basis of the system developed to detect objects in a cluttered environment is
depicted in Figure 1. As perceived in this image, there are three main areas, that
will be described, namely 2D detection, 3D Segmentation and Pose Estimation.

The idea of the proposed system was to enhance the performance of the
recognition framework, and part of the segmentation approach with techniques



Bin Picking Object Segmentation 5

Fig. 1. Object detection pipeline overview

based on deep learning methods, whilst adopting 3D point cloud based heuristics
for final the segmentation of the objects and their respective pose estimation.
The primary reasons for this proposed adjustment is that deep learning models,
when well trained, can provide a high level of robustness to the system, mean-
ing that, when encountering novel and difficult environments (highly cluttered
environments), this system can accurately segment the target objects. Another
reason is the easy system modification to detect a novel object, only requiring
a new neural network model with the knowledge to identify this new object,
therefore not involving several complex steps.

4.1 2D object detection

The detection is generated in a 2D space, resorting to an object instance seg-
mentation framework (Mask R-CNN), which can identify several segments, with
a mask and bounding box, of the same types of objects.

The detection algorithm starts by loading the specified model. After the
loading is completed and is called the process command from the client, the
algorithm waits for an image message publication to read its data (lines 3 and 4
from Algorithm 1).

After reading the input image, image processing techniques are performed to
enhance the object’s visualization. First is implemented a denoise method, with
the fastNlMeansDenoising OpenCV function, followed by a Contrast Limited
Adaptive Histogram Equalization (CLAHE). The functions were applied in this
order to first remove noise from the image, because CLAHE causes noise in near-
constant regions as the background, and to improve the contrast in the image,
improving several detections with darker images.



6 Artur Cordeiro, Lúıs F. Rocha, Carlos Costa, and Manuel F. Silva

Mask R-CNN detection, explicit in Algorithm 1 line 9, extracts the number of
objects, mask (segmentation) of each object and bounding boxes. Afterwards is
generated a 2D array with all the masks discriminated by a different id for each
instance, the number of objects, the center coordinates (x,y) of each bounding
box, and the image resolution, and is published as an 8-bit image (2D array)
topic to be received by the 3D point cloud segmentation algorithm. In the end
is published a result to the client: successful if is collected an acceptable point
cloud from the 3d point cloud sensor, and unsuccessful if the point cloud is not
acceptable or is not received.

Algorithm 1 mask img ← Object Detection(img,m)

Input: img = image,m = trained model

1: Device = ”cpu”
2: Subscribe to img topic
3: wait for img msg
4: img = fastNlMeansDenoising(img)
5: limit = exponential function(image meanvalue)
6: CLAHE = createCLAHE(cliplimit = limit, tileGridSize = (3, 3))
7: img = CLAHE.apply(img)
8: detection = m.detect(img)[0]
9: info array = instances, img.size
10: for i in range(0, instances) do
11: roi x = (rois[i, 1] + rois[i, 3])/2
12: roi y = (rois[i, 0] + rois[i, 2])/2
13: info array = info array, roi x, roi y
14: binary mask = masks[:, :, i].astype(np.uint8) ∗ (i+ 1)
15: id mask = (binary mask == (i+ 1))
16: final mask[id mask] = binary mask[id mask]
17: end for
18: mask img = append(final mask, info array)
19: Publish mask img

4.2 3D point cloud segmentation

The 3D point cloud segmentation algorithm expects to receive an image ar-
ray containing all the detection information provided from Object Detection,
and the original point cloud acquired at the same time as the grayscale image.
When the point cloud is received (lines 1-2 Algorithm 2), the point cloud mes-
sage is transformed from a ROS message sensor msgs::PointCloud2 to PCL
pcl::PointCloud< XYZRGBA >.

As described in the previous sub-section, the information exported through
the image array is organized in specific variables, as presented in Algorithm 2
Lines 9-14. Succeeding the data management, the original point cloud is resized,
allowing to treat this point cloud as a 2D array with the same shape as the



Bin Picking Object Segmentation 7

original grayscale image acquired, and is computed the mean 8x8 center region
z value of each segment (instance), shown in lines 16-26 (Algorithm 2), to predict
the object closest to the sensor in line 27(Algorithm 2).

After estimating the highest point cloud segment, the segment is extracted
from the original point cloud throughout its ID (line 28 to 34 of Algorithm 2) and
are applied several filters, such as voxelgrid, pass-through and statistical outlier
removal (line 35 of Algorithm 2), that essentially were used to remove noise
and unnecessary information. This algorithm structure improves the total time
consumed because, instead of selecting and filtering every point cloud segment
detected, it only selects and filters the highest segment points, which is the
essential instance to pick up.

Algorithm 2 PointCloud Segmentation(mask im)

Input: cloud = pointcloud

1: Subscriber to cloud msg
2: Subscriber to mask im
3: while !cloud received flag do
4: ros :: Duration(0.01).sleep();
5: ros :: spinOnce();
6: end while
7: for int i=0; i¡Instances; i++ do
8: cloud center x[i] = info array.roi x
9: cloud center y[i] = info array.roi y
10: end for
11: Resize cloud received(height ∗ width)
12: for l = 0; l < Instance, l ++ do
13: for i = cloud center x[l]− 8; i ≤ cloud center x[l] + 8, l ++ do
14: for j = cloud center y[l]− 8; j ≤ cloud center y[l] + 8, l ++ do
15: if cloud received → at(i, j).z > 0 then
16: cnt[l]++
17: h[l] = h[l] + cloud received → at(i, j).z
18: end if
19: end for
20: end for
21: h[i]= h[i] / cnt[i]
22: end for
23: higher cloud = std :: distance(h, std :: min element(h, h+ Instances))
24: for int i=0; i¡width; i++ do
25: for int j=0; j¡height; j++ do
26: if id cloud(i,j)==higher cloud+1 then
27: partial cloud = push back(cloud received− > at(i, j))
28: end if
29: end for
30: end for
31: filtered cloud = Filters(partial cloud)
32: Publish filtered cloud



8 Artur Cordeiro, Lúıs F. Rocha, Carlos Costa, and Manuel F. Silva

The following images, displayed in Figure 2, are results from the detection
and segmentation system from one random sample in each dataset of model
A and B. As observed, the system receives the original image (left column of
Figure 2) and detects the distinct instances in the scene, identified by colour
segmentation masks for easy visualization (Middle-Left column). Analysing the
results, even in novel and arduous environments, the system can detect and
segment with high accuracy each object, as observed in the last columnrow 2 of
Figure 2.

Fig. 2. Evaluation results. (Left) original grayscale image (Middle-Left) Detection
mask (Middle-Right) Original point cloud (Right) Partial point cloud segmentation

4.3 Pose estimation and grasping

The pose estimation algorithm is implemented after the point cloud segmenta-
tion, and is based on cloud matching, between the reference point cloud (dis-
played in Figure 3) and the acquired point cloud. Essentially, the segmented
point cloud is matched with a reference point cloud provided through the CAD
model of the specific part that is intended to be picked; subsequently is generated
a grasp solution from the grasp evaluation system, detecting the best possible
grasp (from all the pre-computed candidates) to pick the object in its current
position [19].

The algorithm begins loading the pipeline configurations and the reference
point cloud, acquired either from the 90º elbow tube CAD model or the trian-



Bin Picking Object Segmentation 9

(a) (b) (c) (d)

Fig. 3. Reference point cloud. (a,c) CAD model (b,d) Generated point clouds

gular wall support CAD model, displayed in Figure 3. Subsequently, the point
cloud is filtered and are estimated the surface normals and curvatures. Conclud-
ing the first step, the reference point cloud is stored, and are applied and stored
the keypoints and their descriptors.

The initial pose is estimated through RAndom SAmple Consensus (RANSAC),
and an initial alignment of the two point clouds is refined, using ICP algorithm,
as detailed in Figure 4, applying a transformation from the reference point cloud,
displayed at middle right image of Figure 4 to the detected point cloud in the
middle left image of Figure 4.

Fig. 4. Pose estimation overview

Posterior to the pose estimation, are checked possible object collisions to
evaluate the best grasp candidate among all the previously taught grasp poses
exhibited in Figure 5. This decision is formed through scores that are given
based on heuristics, such as euclidean distance, depth distance; roll, pitch and
yaw distance, among others. In the end, the grasp candidate with the lower cost
is chosen [20].

Fig. 5. Grasping candidates



10 Artur Cordeiro, Lúıs F. Rocha, Carlos Costa, and Manuel F. Silva

After the full procedure (detection, segmentation, pose estimation and grasp
estimation) the robot manipulator starts the bin picking action, displayed in
Figure 6, moving from the initial static pose (Figure 6 (a)) to the estimated
grasping pose ((b) and (d)), and concluding with a trajectory to place the object
in the bin ((c) and (e)). The same process can be repeated for any other object,
modifying only some features of the main object detection framework.

(a) (b) (c) (d) (e)

Fig. 6. Bin picking action sequence

5 System tests and evaluation

The object detection and segmentation framework was tested on eleven types of
scenarios (datasets), detailed in Table 2, divided into six types of datasets for
model A and five types of datasets for Model B. The computer utilized for this
evaluation is described in Section 3, it was only used the computer processor
for the inference stage, only using the GPU for neural network training. The
evaluation datasets (depicted on Figure 7, are divided according to the number
of objects presented in the bin and the type of environment, varying between a
known environment (images that trained the Neurak Network (NN)) and a novel
environment, with less illumination, new positions, viewpoints and backgrounds,
creating an arduous scenario to apply and test the developed framework.

Table 2. Evaluation dataset

Evaluation dataset
Number of

images
Number of
annotations

tubes eval 118 269
triangles eval 54 102



Bin Picking Object Segmentation 11

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j)

Fig. 7. Evaluation Datasets. Top- Model A (knee tube), Bottom- Model B (triangle)

5.1 Object detection and segmentation efficiency and performance

The object segmentation framework average results are illustrated in Table 3,
depicting all the standard deep learning metrics, such as Intersection over Union
mask (IoU mask, represented as mIOU), Average precision (Ap), Average Recall
(Ar), and F1 score.

Table 3. Metrics precision

Overall Ap Ap 50 Ap 75 mIOU Ar 50 F1 50

Model A 0.829 0.971 0.937 0.905 0.955 0.904

Model B 0.751 0.893 0.819 0.873 0.890 0.885

Compared to model A, model B results display a lower average score on every
metric, however still exhibiting high values, around 85% on every metric apart
from Ap with 75%. These results are expected because model B had a lower
quality training compared to model A, with less training time, fewer images,
just one camera viewpoint and fewer batches with a distinct number of objects.

Comparing these results to the results of the original Mask R-CNN [14],
it is observed that the results acquired with this trained models are better.
The improvement is understandable due to the type of objects displayed in an
image (classes), the simpler background due to the application in an industrial
environment and the training phase of the neural network.

The execution time of the object detection and segmentation framework,
illustrated in Table 4, is divided into the detection stage, segmentation and
segmentation with filtering. The values presented are an average measurement
from all datasets samples.

The detection stage, on average, requires around 0.49 seconds to generate the
necessary masks of the input image. The segmentation without filters requires an
average of 0.04 seconds, generating the segmented point cloud of the input mask
closest to the sensor, however exhibiting all the noise and outliers produced by



12 Artur Cordeiro, Lúıs F. Rocha, Carlos Costa, and Manuel F. Silva

Table 4. Execution time (CPU)

Overall Instances number Det (s) Seg (s) Seg + Filters (s)

Model A

1 0.475 0.048 0.452
2 0.481 0.070 0.431
3 0.519 0.045 0.417
4 0.518 0.038 0.483

Model B
1 0.464 0.033 0.299
3 0.508 0.037 0.278
5 0.504 0.028 0.193

the depth sensor in the original point cloud. The segmentation with filtering re-
quires around 0.36 seconds, applying pass-through, voxelgrid and remove outlier
filters.

The average system total time is 0.53 seconds without filtering and 0.85
seconds with filtering. Therefore, the application of filters requires on average
0.32 seconds, increasing or decreasing the time required according to the number
of points given to the filters.

Analysing these results, one big advantage is that the time elapsed is not
dependent on the instance number, due to the segmentation algorithm structure.
As displayed in Table 4, the only noticeable difference is in the segmentation and
filtering stage between model A and model B, diverging from 0.44 seconds on
average to 0.25 seconds, on average, respectively. This difference is due to the
original point cloud generation; as shown later in the results, the model B point
cloud has much less noise and outliers than the model A point cloud.

These average execution time values can fluctuate according to the model
resolution, namelly the values presented in this article are for 1024x1024 image
resolution, which was the resolution that the images were resized when training
the model. The time can be reduced by decreasing this resolution.

6 Discussion and Future work

This paper addressed bin picking problems in clutter environments using a stan-
dard robot manipulator with a parallel gripper, implementing a system based
on deep learning techniques.

After analysing different frameworks, it was proposed an approach to detect
and segment instances based on instance segmentation techniques and point
cloud procedures, using grayscale image and point cloud data generated with an
RGB-D sensor. This implementation estimates the different instance segments
in a grayscale image by applying image processing techniques and Mask R-
CNN neural network. Subsequently, it is received point cloud data to estimate
and extract the object (partial point cloud) closest to the sensor, to be sent
to the pose and grasp estimation systems, and finally, the robot manipulator
grasps the object through the desired position. The proposed system is capable
of segmenting several types of objects in cluttered environments. However, in



Bin Picking Object Segmentation 13

this case, it was only trained to detect two models, a 90º elbow tube model
(model A) and a triangular wall support model (model B).

The accuracy and execution time achieved by the proposed system allows
to detect and segment instances with several occlusions in hard environments,
being able to estimate the closest object to the sensor, which will probably be
the easiest to pick up, with acceptable execution times for an industrial solution.

The current implemented system can be further improved by estimating an
initial pose of the segmented objectoutput cloud, given the fact that the par-
tial point cloud has the same (x, y) position as the original one, improving the
efficiency of the matching algorithm in the pose estimation system, and decreas-
ing the iterations required to match the two point clouds. In addition to initial
pose estimation, the system can be implemented with multiple channels of neu-
ral network inputs, modifying Mask R-CNN to predict the output based on,
for example, two types of data (such as grayscale and depth images), instead
of segmenting instances based only on a 2D image. On the other hand,The last
future work for this system is to enhance system performance with Mask R-CNN
models with less resolution and similar precision values.

Considering that the neural network training stage is very time-consuming
and exhausting to create instance segment labels for all the original images,
this stage can be improved with an automated image generation and labelling
system, for example, using 3D creation software, such as Blender.

7 Acknowledgements

The research leading to these results has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement
No 101006798.

References

1. A. Doumanoglou, R. Kouskouridas, S. Malassiotis, and T.-K. Kim, “Recovering
6d object pose and predicting next-best-view in the crowd,” in 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Jun.
2016. [Online]. Available: https://doi.org/10.1109/cvpr.2016.390

2. A. Pochyly, T. Kubela, V. Singule, and P. Cihak, “Robotic bin-picking system
based on a revolving vision system,” in 2017 19th International Conference on
Electrical Drives and Power Electronics (EDPE). IEEE, Oct. 2017. [Online].
Available: https://doi.org/10.1109/edpe.2017.8123228

3. C. Choi, Y. Taguchi, O. Tuzel, M.-Y. Liu, and S. Ramalingam, “Voting-based pose
estimation for robotic assembly using a 3d sensor,” in 2012 IEEE International
Conference on Robotics and Automation. IEEE, May 2012. [Online]. Available:
https://doi.org/10.1109/icra.2012.6225371

4. W. Yan, Z. Xu, X. Zhou, Q. Su, S. Li, and H. Wu, “Fast object pose estimation
using adaptive threshold for bin-picking,” IEEE Access, vol. 8, pp. 63 055–63 064,
2020. [Online]. Available: https://doi.org/10.1109/access.2020.2983173



14 Artur Cordeiro, Lúıs F. Rocha, Carlos Costa, and Manuel F. Silva

5. G. Leão, C. M. Costa, A. Sousa, and G. Veiga, “Detecting and solving tube
entanglement in bin picking operations,” Applied Sciences, vol. 10, no. 7, p. 2264,
Mar. 2020. [Online]. Available: https://doi.org/10.3390/app10072264

6. I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic grasps,”
2013. [Online]. Available: https://arxiv.org/abs/1301.3592

7. J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry,
K. Kohlhoff, T. Kroger, J. Kuffner, and K. Goldberg, “Dex-net 1.0: A
cloud-based network of 3d objects for robust grasp planning using a multi-armed
bandit model with correlated rewards,” in 2016 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, May 2016. [Online]. Available:
https://doi.org/10.1109/icra.2016.7487342

8. J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps with
synthetic point clouds and analytic grasp metrics,” 2017. [Online]. Available:
https://arxiv.org/abs/1703.09312

9. A. Zeng, K.-T. Yu, S. Song, D. Suo, E. Walker, A. Rodriguez, and J. Xiao,
“Multi-view self-supervised deep learning for 6d pose estimation in the amazon
picking challenge,” 2016. [Online]. Available: https://arxiv.org/abs/1609.09475

10. T.-T. Le and C.-Y. Lin, “Bin-picking for planar objects based on a deep learning
network: A case study of USB packs,” Sensors, vol. 19, no. 16, p. 3602, Aug.
2019. [Online]. Available: https://doi.org/10.3390/s19163602

11. T. Höfer, F. Shamsafar, N. Benbarka, and A. Zell, “Object detection and
autoencoder-based 6d pose estimation for highly cluttered bin picking,” 2021.
[Online]. Available: https://arxiv.org/abs/2106.08045

12. M. Danielczuk, M. Matl, S. Gupta, A. Li, A. Lee, J. Mahler, and K. Goldberg,
“Segmenting unknown 3d objects from real depth images using mask r-cnn trained
on synthetic data,” 2018. [Online]. Available: https://arxiv.org/abs/1809.05825

13. R. Girshick, “Fast r-cnn,” 2015. [Online]. Available: https://arxiv.org/abs/1504.
08083

14. K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” 2017. [Online].
Available: https://arxiv.org/abs/1703.06870

15. W. Abdulla, “Mask r-cnn for object detection and instance segmentation on keras
and tensorflow,” https://github.com/matterport/Mask RCNN, 2017.

16. “Tested build configurations,” https://www.tensorflow.org/install/source\#gpu,
accessed: 2022-03-03.

17. “Mask r-cnn for object detection and segmentation using tensorflow 2.0,” https:
//github.com/ahmedfgad/Mask-RCNN-TF2, accessed: 2022-03-13.

18. “Industrial 3d scanner: Phoxi®.” [Online]. Avail-
able: https://www.photoneo.com/phoxi-3d-scanner/?gclid=EAIaIQobChMI
4y38LLp-AIVCcPVCh2E0A8eEAAYASAAEgJMwfD BwE

19. C. Costa, H. Sobreira, A. Sousa, and G. Veiga, “Robust 3/6 dof self-localization
system with selective map update for mobile robot platforms,” Robotics and Au-
tonomous Systems, vol. 76, pp. 113–140, 02 2016.

20. J. Carvalho de Souza, C. Costa, L. Rocha, R. Arrais, A. Moreira, E. Pires, and
J. Cunha, “Reconfigurable grasp planning pipeline with grasp synthesis and selec-
tion applied to picking operations in aerospace factories,” Robotics and Computer-
Integrated Manufacturing, vol. 67, 07 2020.


